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FOREWORD

This report was prepared by the Lockheed-Georgia Company, Marietta, Georgia, for the

Aerospace Dynamics Branch, Vehicle Dynamics Di*ision, Air Force Flight Dynamics

Laboratory, Wright-Patterson Air Force Base, Ohio, under contract F33615-73-C-3038.

The work described herein is a continuing part of the Air Force Systems Command's

exploratory development program to obtain accurate and reliable methods of vibration

prediction, control, and measurement for flight vehicles.

The work was directed under Project 1370, "Dynamic Problems in Flight Vehicles,"

and Task 137002, "Flight Vehicle Vibration Control." Captain James E. Marsh (AFFDL/

FYS) was the Project Engineer. The Lockheed program manager and principal investi-

gator was Mr. Harold W. Bartel, assisted by Mr. Cecil W. Schneider.

This work is reported in two separate documents. The Lockheed identification of

this document is LG74EROI2I. The first document is AFFDL-TR-74-74, "Acoustically

Induced Vibration in Transport Category Aircraft," and is identified by Lockheed as

LG74EROI2O. It contains a description of the vibration measurements, tests, analyses,

and derivations leading to the method described in this appendix.

Submittal of the technical report by the author in September 1974 completed the

contract, which was initiated in February 1973.

This technical report has been reviewed and is approved.

WALTE OW

Asst. for Research & Technology
Vehicle Dynamics Division
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ABSTRACT

A method is set forth for predicting the acoustically induced structural vibration in transport

category aircraft. Charts are presented which correlate third-octave random noise and

vibration levels at various confidence levels, for the frequency range of 50 to 2500 Hertz.

The prediction charts are based on measured data from modern transport aircraft and are

presented for the normal direction, ground operation, and a reference structural mass and

rigidity. Shell-type structure (fuselage, pods, fairings) and box-type structure (wing,

horizontal/vertical stabilizer) are treated separately. Means are provided for predicting

lateral and tangential vibration, vibration in pressurized cruise flight, and for correcting

for changes in structural mass and rigidity. Application of the method to a hypothetical

airplane design case is illustrated in an example.
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INTRODUCTION

Estimates of vibration level are vital to the preliminary design of new aircraft. This requires

consideration of all sources of vibration for all representative missions and flight conditions.

Because sources, missions, and flight conditions vary widely among different categories of

aircraft, it is expedient to tailor vibration prediction methods to specific categories. In

transport category aircraft, vibration may be induced by runway roughness, wheel unbalance,

atmospheric disturbance, unsteady aerodynamic flow, engine unbalance, auxiliary equipment

operation, engine noise, boundary layer noise, and other independent causes, each sufficiently

different to require separate consideration in the vibration prediction process. At any instant

in time, the vibration at any particular point on the structure of a transport aircraft may be the

net result of various of these sources in combination. The success of the analyst in predicting

the complete vibration environment will, in large part, hinge on the quality of the methods,

data, and information he can assemble to account for these various independent sources.

This publication is intended to improve the analyst's chance for success, by adding to his in-

ventory of tools and information, a method for predicting the acoustically induced vibration

in transport category aircraft.

Only the essentials for application of the method are presented in this Appendix. The detailed

measurements, tests, analyses, and considerations leading to formulation of the method are

described separately in AFFDL-TR-74-74 "Acoustically Induced Vibration in Transport

Category Aircraft."



GENERAL INSTRUCTIONS

This vibration prediction method applies to the prediction of structural vibration induced by the

impingement of randomly fluctuating sound pressures on the exterior surface, in the frequency

range of 50 to 2500 Hertz. The method consists of a series of charts (Figures 1 through 18) which

correlate third-octave bond noise and vibration levels for a "reference" structure, with corrections

(Figures 19 through 22) toaccount for direction, pressurized flight, mass, and rigidity effects.

These charts are based largely on data measured on two contemporary jet transport aircraft, and

are presented for the normal direction, ground operation, and a specific reference structural

mass and rigidity.

In past formulations the practice has been to establish such charts according to zones of

structural similarity. However, a means is included here to account for variations in structural

mass and rigidity, which eliminates much of the need for a zonal classification. The charts

are limited to two basic structural types: shell structure, and box structure, exemplified by

Figure 23. Shell structure is conventional skin-frame-stringer structure, or the equivalent,

as used in fuselages, landing gear pods, fairings, etc. Box structure is the skin-stiffened box-

beam type structure commonly used in wings, and vertical and horizontal stabilizers.

For each type of structure there is a set of noise-vibration correlation charts; one for each

third-octave band. Each chart contains four confidence level lines; 50%, 80%, 90% and

97.5%. These confidence levels are the confidence, or percent probability, that any particular

vibration measurement will fall on or below the line. Thus, for the 80% confidence line, there

is 80% chance that a particular measurement would be below the line, and 20% chance that it

would be above the line. The 50% confidence line is the mean or regression line.

Vibration levels are specified in terms of third-octave root-mean-square accelerations - Gr

These are the structural responses to randomly fluctuating third-octave sound pressures in

decibels. The charts are not valid for discrete frequency or periodic sound pressures (e.g.

propeller noise, gunfire, pure tone acoustical resonance in a cavity, etc.).

The noise-vibration charts are for the reference condition of vibratory motion in a direction

normal to the surface of the structure. Correction charts (Figures 19 and 20) are included

for obtaining Grins in the lateral and tangential directions. The normal, lateral, and tangential
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directions are defined in relation to the structural element, such as a frame, stringer, or wing

beam. They have no fixed relation to the major axes of the airframe, or the earth. Normal

always means perpendicular to the external surface; lateral means parallel to the surface and

perpendicular to the lengthwise direction of the structural element; tangential means parallel

to the surface and in the lengthwise direction of the element. For a further definition of

vibratory direction, see Figure 24.

Information Required

A knowledge of the new airplane mission, the purpose of the vibration prediction, and the

amount of prediction refinement work to follow, are necessary when considering confidence

level, vibratory direction, and operating conditions. Beyond this, the following specific

information is necessary to use this method:

Sound pressure level: third-octave band sound pressure levels at the surface of the structure

for the airplane operating conditions for which vibration predictions are to be made.

Confidence level: a definition of the confidence level at which the prediction is to be made.

Confidence level should take into account the "quality" of the noise levels; the planned use

for the predictions (equipment fatigue, equipment malfunction or error, structural analysis, etc.)

and the degree of risk acceptable and consistent with cost, weight, and airplane mission. If

the vibration prediction is to be used for analysis or test of a component whose failure would

cause loss of the aircraft, a confidence level of 95% or greater is suggested. Lesser confidence

levels are called for when assessing non safety-of-flight hardware; levels of 80% have been

used successfully on some programs.

Structural mass and rigidity: an estimate of the mass and rigidity of the new airplane structure

at the point of interest, in units of lbs/in for mass, and lbs - in2 for rigidity. For this method,

"mass" is defined as the sum of the weights of all the surface structural components in a 40" by

40" surface area.
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1I11 t11,1 !ki,-frcme-stringer structure, as illustrated in Figure 23

M = 40 - + s + h]

, e c,) A ad A are cross-sectional areas in square inches of individual frames and
r s

S,.jnd P are densities of frames, stringers, and skin plate in pounds per cubic

s ,ki Wrickiiess in inches; b is frame spacing in inches; a is stringer spacing in inches;

and lh co istant 40 is the dimension of the structural area in inches.

For )ox-t-,pe b m-r-piate construction, as illustrated in Figure 23

[AbPb A 4 2Ap
M=40 + rr+ ICALm_

b a 40

w'ere Ab, A rond A are average individual beam, rib, and plate cross-sectional areas

io s.uare incheb, bPr' and p are densities of beams, ribs, and plates in pounds per cubic

ii.ch; a :s ib spacing ;n inches; b is beam spacing in inches; the constants 40 are inches; and

the ',onstant 2 accounts for an upper and lower plate. Plate cross-sectional area includes

risers, in a 40" width.

Rigidity is defined as the sum of the products of modulus and inertia for all of the components

in a 40" by 40" surface area. For shell-type skin-frame-stringer structure the skin contribution

may be neglected, whereby the rigidity D is

D = 40[Ef If

where Ef and E are moduli of elasticity for frames and stringers in pounds per square inch; If and

I are area moments of inertia for frames and stringers in inches-fourth; a is stringer spacing ins

inches; b is frame spacing in inches; and the constant 40 is inches.

For box-type beam-rib-plate construction, the rib contribution may be neglected, whereby

D = 40 0 + 4 J
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where Eb and E are moduli of elasticity for the beams and plates in pounds per square inch;

Ib is area moment of inertia of the beam in inches-fourth; I is area moment of inertia for a

40 inch width of the two plates (taken about a neutral axis midway between the plates) in

inches-fourth; b is beam spacing in inches; and the constants 40 are inches.

If detailed structural information is lacking but mass can be approximated in some other way,

and if it is known that the new airplane structure is of the same general concept as contemporary

large jet transport aircraft, then rigidity can be approximated from Figure 25 . However, if

neither approach is practical, mass and rigidity effects can be neglected pending further

structural definition. In this case Figures 1 through 18 are used directly and the predicted

levels will be for the mass and rigidity values stated on the figures.

Specific Instructions

To predict vibration proceed as follows:

Shell Structure

Obtain rms acceleration from Figures 1 through 9 for the reference case of engine runup on the

ground, vibration in the normal direction, structural mass of 0.59 lbs/in, and rigidity of 4.38 x

10 lbs-in2 . These levels may then be modified as appropriate to obtain levels for other mass

and rigidity values, other directions, and for pressurized cruise flight. To correct for mass and

rigidity effects, compute the mass ratio MR/MP, and the rigidity ratio Dp/DR, where the sub-

scripts R and P denote values for reference and prediction structure. Enter Figure 21 with the

computed mass and rigidity ratios, and obtain the correction factor C3 to be applied to the

vibration levels obtained from Figures 1 through 9. The correction factor C3 is valid for all

frequency bands.

To obtain vibration level in the lateral or tangential direction, enter Figure 19 or 20 at the

same sound pressure level used in Figures 1 through 9, and obtain the level ratio for each

frequency band.

To obtain vibration level for pressurized cruise flight, enter Figure 22 at the same confidence

level used in Figures 1 through 9 and obtain the level ratio for each frequency band.
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6ox ih',Jclure

wrrn ' cc. -. r.,nt Tro4n rigures 10 through 18 for the reference case of engine runup on

te Iio,d, ,/ibrc-on i n the normal direction, structural mass of 2.24 lbs/in, and rigidity of
io - 21 -x 10 h iese levels may then be modified as appropriate to obtain levels for

o nir Y -, ) v,jlues and other directions. No correction is available for the cruise

cus, {pt-sur aiion effects are not applicable.)

Ti c-r ct fo, rr,:s and rigidity effects, compute the mass ratio MR MpI and the rigidity ratio

D , whe +he subscripts R and P denote values for reference and prediction structure. Enter

Figure 21 wit!- 47e co:.ipA.ted mass and rigidity ratios, and obtain the correction factor C- to be

appled to the v;brtinn levels obtained from Figures 10 through 18. The correction factor C3
is valid for all reqcye ;cy bands.

To obtain vibration Ievel in the lateral or tangential direction, enter Figure 19 or 20 at the

sam sound pressure level used in Figures 10 through 18 and obtain the level ratio for each

frequency band
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ILLUSTRATIVE APPLICATION

The step-by-step procedure for predicting vibration levels using the charts and graphs provided,

is exemplified in the following illustrative application. Although the corrections could be

combined, and some of the operations omitted, all have been shown independently, and

repetitiously, for the sake of clarity.

Consider a hypothetical aircraft modification having the following particulars:

" Long-range subsonic conventional transport intended for electronic surveillance

missions.

o Two areas are of interest - one in the fuselage and one in the wing - which

will contain equipment. Orientation of the equipment has not been

finalized.

o Need preliminary definition of service vibration environment.

o The fuselage surface structure is conventional pressurized skin-

frame-stringer aluminum structure. Frames are .080" "Z" sections

4" deep with I" flanges. Stringers are .090" "Z" sections 2"

deep with 3/4" flanges. The frames are spaced at 18"; stringers at

6". The skin is .080".

0 The front beam and rib of the outer wing box are in a conventional

wet-wall dual-spar aluminum torque box. The front and rear beams

are approximately 80" apart. The beams and end ribs are all approxi-

mately 0.25" thick "I" sections averaging 16" deep with 3" caps. The

internal chordwise ribs are stabilizing trusses spaced at 50". The

upper and lower surface plates are 0.14" thick with integral 0.10"

thick risers, 2" deep, spaced at 3".

7



At the pertinent locations on the surface of the fuselage and the outer wing,

noise levels are:

FREQUENCY THIRD-OCTAVE BAND NOISE LEVELS - dB
BAND

Hz TAKEOFF CRUISE

Fuselage Wing Fuse lage Wing

50 113 124 107 72
63 115 125 110 75
80 117 126 114 78
100 118 128 117 82
125 119 129 121 86
160 121 130 123 9'0
200 122 132 125 94
250 123 133 127 98
315 125 134 125 101
400 126 135 123 104
500 128 136 121 108
630 129 134 118 111
800 130 132 116 114

1000 131 130 114 117
1250 129 129 112 119
1600 127 128 i11 121
2000 129 127 110 123
2500 133 129 109 125
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The vibration predictions for this hypothetical case are guided by the following ground rules

and observations.

o Vibration should be checked for takeoff vibration conditions.

Cruise noise levels are significant in some bands. Vibration will

need to be checked under cruise vibration conditions. Therefore,

predict vibration for both takeoff and cruise.

o Since equipment orientation is unknown, the definition of the vibration environment

should be based on the worst case. Therefore predict vibration for each direction

and envelope the spectra.

o The noise levels are an average of measured values for standard day conditions.

Occasionally, levels will be higher under certain atmospheric and operational

conditions. The structure and equipments must be highly reliable.

Some risk of design change is prudent to minimize cost and weight. Therefore

predict vibration for the 90% confidence level.

Fuselage Location

Takeoff Condition

Figure 1 at 113 dB shows the 50 Hz vibration level at the 90% confidence line to be 0.14 Grms °

From Figure 1, the 63 Hz level at the 90% confidence line for 115 dB is 0.22 G . For all' rms

bands the levels predicted during takeoff for the reference shell structure in the normal direction,

and for the reference mass and rigidity, are tabulated as item 1 in Table I.

The airplane structural mass and rigidity values at the fuselage location are

Mass = MPred = 40 [ .080(4+1+1)(.1) + .090(2 + .75 + .75)(.1) + (.08)(.i)1 0.64 lb/in.
J-8 6 J

- 3.53 x 107 lbs-in2

9



Tk: rncs MRef = .59 = 0.92
MPred

The igidity ratio i Pred 3.53 x 10 = 0.81
DRef 4.38 x 107

Entering Figure 21 at MR'/MP = 0.92 and at Dp/D R = 0.81 shows the mass and rigidity correction

C 3 to be 0,90,whid is tabulated as item 2 in Table I. Multiplying each of the tabulated Grms

reference leveL by this correction yields the predicted takeoff vibration level for the fuselage

structure, for thc2 normal direction. These values are tabulated as item 3, Table I.

Entering Figure 19, the ratio of lateral-to-normal vibration level, GL/GR for the 50 Hertz band

and 113 dB is 0.65; for the 63 Hz band and 115 dB, GL/GR is 0.77. For all bands, the values

of GLG R are tabulated as item 4 in Table I. Multiplying the normal direction levels by these

values yields the predicted lateral levels tabulated as item 5, Table I.

Entering Figure 20, the ratios of tangential to normal vibration levels, GT/GR' are read in

like manner, and are tabulated in item 6, Table I. Multiplying the normal direction levels

by these values yields the predicted tangential vibration levels, tabulated as item 7, Table I.

Noting the highest of the normal, lateral, and tangential levels, and retabulating the results,

yields the predicted takeoff vibration spectrum for the worst direction at the fuselage location,

tabulated as item 8, Table I.

Cruise Condition

Using Figure 1, at 107 dB the 50 Hz vibration level for the 90% confidence line is .095 Grms

The reference structure vibration levels for all bands are read in like manner and tabulated in

item 9 of Table I. The mass and rigidity correction, C3 = 0.90, is tabulated in item 10,

Table I. Using Figure 22 to correct the reference levels for pressurized cruise flight, Gp!GR'

at 50 Hz and the 90% confidence line,is 0.35. The correction for all bands is read in like

manner and tabulated in item 11 of Table I. This correction and the mass-rigidity correction

are applied to the item 9 reference levels to obtain the item 12 cruise vibration levels in the

normal direction, at the fuselage location.
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Entering Figure 19, the ratio of lateral-to-normal vibration level, GL/GR, for the 50 Hertz

band and 107 dB is 0.64. Similarly, ratios are obtained for all bands and are shown in item

13 of Table I. Multiplying the normal direction levels by these values yield the predicted

lateral vibration levels, tabulated in item 14, Table I.

Entering Figure 20 the ratio of tangential-to-normal vibration level, GT/GR' for the 50 Hz

band and 107 dB, is 0.62. Similarly, values are obtained for all bands and are shown in item

15 of Table I. Multiplying the normal direction levels by these values yields the predicted

tangential vibration levels, tabulated in item 16 of Table I.

Noting the highest of the normal, lateral, and tangential levels and retabulating the results

yields the predicted pressurized cruise vibration spectrum for the worst direction at the fuselage

location, as tabulated in item 17 of Table I.

The predicted fuselage vibration level in each direction, and the envelope of highest level,

for the takeoff and cruise cases, are shown plotted in Figure 26.

Wing Location

Takeoff Condition

Entering Figure 10 at 124 dB, the 50 Hz vibration level at 90% confidence is 0.38 G . Fromr ms

Figure 10 the 63 Hz vibration level at 90% confidence for 125 dB is 0.54 G . Levels in allr ms

bands are obtained in like fashion and tabulated in item 1 of Table II for the reference box

structure.

The structural mass and rigidity values at the wing location are

Mass=M40 -8 (3 + 3 + 15.5) (.1)+ 0 (.14 x 40 + L-x 2 x .1)(.1 = 1.92 lbs/in
P -04

Rigidity =  Dp= 40 /0 .25 x 553 2x .25 x 3 x 7.8752 )+i07 (2..14x40x 8.072

8- (1 12°T°

+ 2 x 40x .10 x 2 x = 1.076 x 1 lbs-in 2 (chord-wise trusses neglected)
3



The mass ratio is AR = 2.24 = 1.17

The rigidity ratio is D..= 1 . 7 6x10 0.63

R 1.7 x 1010

Entering Figure 21 at a mass ratio of 1 .17 and a rigidity ratio of 0.63, the mass and rigidity

correction is 1.10, as tabulated in item 2 of Table II. Each of the Table II, item 1, reference

levels are multiplied by this correction to obtain predicted takeoff vibration levels at the wing

location for the normal direction, which are tabulated in item 3 of Table II.

From Figure 19, the ratios of lateral-to-normal vibration level, GL/GR, at the takeoff noise

levels are obtained for each band and tabulated in item 4, Table II. Normal direction levels

are multiplied by these ratios to obtain lateral vibration levels, which are tabulated in item 5,

Table II.

From Figure 20, the ratios of tangential-to-normal vibration level, GT/GR' at the wing noise

levels are obtained for each band and tabulated in item 6, Table II. Normal direction levels

are multiplied by these values to obtain tangential vibration levels, which are tabulated in

item 7, Table II.

The highest of the normal, lateral, and tangential levels are noted and retabulated in item 8,

Table II to obtain the takeoff vibration spectrum for the worst direction at the outer wing

location.

Cruise Condition

Using cruise noise levels, the reference structure vibration levels at 90% confidence ore

obtained from Figures 10 through 18 and tabulated in item 9 of Table II. Multiplying these

levels by the item 10 mass-rigidity correction, the cruise vibration levels in the normal

direction are obtained and tabulated in item 11, Table II, for the wing location.

The ratio of lateral-to-normal vibration level, GL/GR, at the cruise noise levels, are obtained

for each frequency band and tabulated in item 12, Table II. Normal direction levels are

multiplied by these ratios to obtain the lateral vibration levels tabulated in item 13, Table II.

12



The ratios of tangential-to-normal vibration level, G1GR , at the cruise noise levels, are

obtained for each frequency band and tabulated in item 14, Table II. Normal direction

levels are multiplied by these ratios to obtain the tangential vibration levels tabulated in

item 15, Table II.

The highest of the normal, lateral and tangential vibration levels are noted and retabulated

in item 16, Table II to obtain the cruise vibration spectrum for the worst direction at the

outer wing location.

The predicted wing beam vibration level in each direction, and the envelope of highest levels,

for the takeoff and cruise cases, are shown plotted in Figure 27.
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